US ERA ARCHIVE DOCUMENT

CASE STUDY 1: Endocrine Disruptors: Estrogen Receptor Expert System (ERES)

Mechanistic Basis of the Expert System

- Adverse Outcome Pathway (AOP) context
- OECD QSAR Validation Principles
- Expert System decision tree codes the measured data from in vitro assays designed for purpose
 - Assays optimized to detect any potential for ER interaction, including low affinity binding
 - Provides the data and expert interpretation in decision tree format; provides predictions based on extrapolation of measured data (displays training set used in prediction) so user can interpret and assess use for their purpose
 - Transparency
 - Can the QSAR estimate be explained mechanistically?
 - How reasonable is an estimate compared with data for similar chemicals?
 - Usefulness
 - Are the predictions applicable to all the chemicals of regulatory concern?
 - Does the model/expert system answer the regulatory question?

ER-mediated Reproductive Impairment Adverse Outcome Pathway

Chemical Effects Across Levels of Biological Organization

Mechanistic linkage between the risk assessment endpoint (ER-mediated reproductive impairment) and the hazard identification endpoint (MIE: ER binding)

Adverse Outcome Pathway

Greater Toxicological Understanding

Greater Risk Relevance

ER Binding Affinity: An Indicator of Potential Reproductive Effects

- In vitro Assays used to build the Expert System are along an adverse outcome pathway (AOP) ending in reproductive impairment
 - The molecular initiating event (MIE) of the pathway is ER binding (msrd)
 - Tissue level response key event along the pathway confirms a higher level response (msrd)
 - The measured data identifies which chemical structures can initiate the pathway and subsequent key event
 - The Expert System extrapolates from the measured data to predict ER binding potential of unmeasured chemicals that are within the bounds of measurement
 - The Expert System also indicates when a chemical is outside the bounds of the measured data thus accurate predictions are not possible (Unknown Binding Potential)
 - AOP context provides conceptual model useful for generating testable hypotheses (e.g., prioritization for Tier 1 screening)
 - AOP context provides decision-making rationale for the regulatory community (e.g., knowns and unknowns along the AOP)

ER-mediated Reproductive Impairment Adverse Outcome Pathway

Chemical Effects Across Levels of Biological Organization

Mechanistic linkage between the risk assessment endpoint (ER-mediated reproductive impairment) and the hazard identification endpoint (MIE: ER binding)

Adverse Outcome Pathway

Greater Toxicological Understanding

Greater Risk Relevance

OECD Principles for QSAR Validation

- Well-Defined Endpoint (in vitro assay domain)
 - Well-defined biological endpoint
 - Informs important risk endpoint
 - AOP ending in impaired reproduction provides plausible linkage of MIE to higher level adversity as basis for prioritizing chemicals for higher level assays
 - Interpreting the measurements
 - Measurement endpoint and confounding factors are discussed
 - Well-defined chemistry
 - Using in vitro assays that allow testing of the types of chemicals (range of properties) found on regulatory inventories
 - Understanding the chemical form and concentration in the assays
- Mechanistic interpretation
 - Being able to explain the predictions mechanistically
 - With respect to chemistry & biology in the assay system
 - Relationship of predicted parameter to regulatory question
 - Likelihood to initiate ER-mediated Reproductive Impairment AOP
 - Relationship of chemical parameters to biological activity

OECD Principles for QSAR Validation

- Defined Model Applicability Domain
 - Well-defined application
 - Regulatory question priority setting not predicting adverse outcome
 - Expert System model domain coverage well-defined
 - Decision tree, logic rules, local in vitro TrSets upon which rules are based
 - Expert System model domain adequately covers the Regulatory Chemical domain
 - Fooduse pesticidal Inerts (FI); Antimicrobials (AM)
 - EDSP Universe
- Appropriate measures of goodness of fit, robustness, ability to predict
 - Measures appropriate for a regression model are not appropriate to evaluate an expert system logic rules
 - Series of local models, local in vitro TrSets, "unknown" structure compared to tested chemicals
- Unambiguous algorithm
 - Expert Systems logic tree, rules/queries, supporting information

ER Expert System –

Effects-Based Chemical Categories Approach

Chemical Similarity

Building Effects-based Categories:
Structural similarity defined by similar biological activity

- MIE of ER-mediated AOP

Multiple ER-interaction types recognized
-chemicals can interact at
different points ('A' or 'B'),
depending on their properties
-chemicals initiating MIE at
same point are 'similar'

Common biological activity within a chemical structural series is coded into ES logic rules in decision tree

ER Expert System Decision Tree

 Expert System codes the measured data in a decision tree from the *in vitro* assays designed for purpose

ER Binders

Trout ER Relative Binding Affinity vs. Log Kow RBA = relative binding affinity compared to Estradiol at 100%

ER Expert System Decision Tree

 Expert System codes the measured data in a decision tree from the *in vitro* assays designed for purpose

Built through collaborative effort between EPA, OECD and LMC

http://www.qsartoolbox.org/

Decision Tree

Yes/No decision-based dendroid logic scheme

Single chemical profiling....

Or batch profiling, e.g., inventory list

The path followed through yes/no questions in decision tree to the final decision point is displayed.

Profiler

Expert System Development

- 2009 SAP review
 - Model Domain ER ESv1
 - Regulatory Domains
 - Coverage: Food-use Inerts (FI) and Antimicrobials (~95% NON-Binders; ~5% prioritized Binders)
- 2013 SAP review:
 - Automated ER ESv1
 - Expanding Domain Coverage with in vitro testing; build effects-based chemical categories:
 - Non Food-use inerts (NFI)
 - Evaluate ES Coverage of EDSP Universe
 71%; (~5% prioritized Binders)
- Additional Work:
 - Complete ER ESv2
 - Expand Domain (in vitro testing) to cover remaining EDSP Universe; build ER ESv3

Thank you!

Pat Schmieder
Molecular & Cellular Mechanisms Research Branch Chief
Mid-Continent Ecology Division, Duluth, MN
National Health and Environmental Effects Research Laboratory
Office of Research and Development
U. S. Environmental Protection Agency